Infinite families of (n+1)-dichromatic vertex critical circulant tournaments

نویسندگان

  • Gabriela Araujo-Pardo
  • Mika Olsen
چکیده

In this talk we expose the results about infinite families of vertex critical r-dichromatic circulant tournaments for all r ≥ 3. The existence of these infinite families was conjectured by Neumann-Lara [6], who later proved it for all r ≥ 3 and r = 7. Using different methods we find explicit constructions of these infinite families for all r ≥ 3, including the case when r = 7, which complete the proof of the conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A conjecture of Neumann-Lara on infinite families of r-dichromatic circulant tournaments

In this paper we exhibit infinite families of vertex critical r-dichromatic circulant tournaments for all r ≥ 3. The existence of these infinite families was conjectured by NeumannLara (7), who later proved it for all r ≥ 3 and r 6= 7. Using different methods we find explicit constructions of these infinite families for all r ≥ 3, including the case when r = 7, which complets the proof of the c...

متن کامل

The dichromatic number of infinite families of circulant tournaments

The dichromatic number dc(D) of a digraph D is defined to be the minimum number of colors such that the vertices of D can be colored in such a way that every chromatic class induces an acyclic subdigraph in D. The cyclic circulant tournament is denoted by T = −→ C 2n+1(1, 2, . . . , n), where V (T ) = Z2n+1 and for every jump j ∈ {1, 2, . . . , n} there exist the arcs (a, a+ j) for every a ∈ Z2...

متن کامل

Dichromatic number, circulant tournaments and Zykov sums of digraphs

The dichromatic number dc(D) of a digraph D is the smallest number of colours needed to colour the vertices of D so that no monochromatic directed cycle is created. In this paper the problem of computing the dichromatic number of a Zykov-sum of digraphs over a digraph D is reduced to that of computing a multicovering number of an hypergraph H1(D) associated to D in a natural way. This result al...

متن کامل

Disproof of a Conjecture of Neumann-Lara

We disprove the following conjecture due to Vı́ctor Neumann-Lara: for every pair (r, s) of integers such that r > s > 2, there is an infinite set of circulant tournaments T such that the dichromatic number and the cyclic triangle free disconnection of T are equal to r and s, respectively. Let Fr,s denote the set of circulant tournaments T with dc(T ) = r and − →ω 3 (T ) = s. We show that for eve...

متن کامل

Bounds and constructions for n-e.c. tournaments

Few families of tournaments satisfying the n-e.c. adjacency property are known. We supply a new random construction for generating infinite families of vertex-transitive n-e.c. tournaments by considering circulant tournaments. Switching is used to generate new ne.c. tournaments of certain orders. With aid of a computer search, we demonstrate that there is a unique minimum order 3-e.c. tournamen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2007